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OPTIMUM MOTION IN A CENTRAL FIELD WHEN THE OPERATION TIME
OF A PROPULSION SYSTEM IS GIVEN

Yu. N. Ivanov, V. A. Vinokurov

ABSTRACT 2] LS|

A method was proposed in reference 1 for solving the 1225*
variational problem of maximum useful load delivery from a
motor with limited power in a given operating time. The
essence of this method is as follows: a new phase coordi-
nate tm is introduced which is the running time of the
motor, as well as a new control §(¢)--a relay function which
takes on the value 1 when the motor is "on", and 0 when the
motor is "off"--and a differential relationship is found
between tm(t) and §(¢): gﬂ= §. The control function of
the motor--the discharge (or thrust)--is multiplied in all
equations by the function 6§ so that the new discharge co-
incides with the old when §=1, and vanishes when 6= 0.
The equation for §(%) is determined from conditions for the
extremum of the central functional and boundary conditions
for tm(0)= 0, ew(T)= qm. For plane-parallel and zero-force
fields, the variational problem is completely solved, and
results are given in reference 1 for setting up a given
modulus of speed and flight between two quiescent points.

A similar formulation of the variational problem for a

*Numbers given in margin indicate pagination in original foreign text.
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central field requires a numerical solution. In this paper
the authors solve the variational problem for flight between
circular orbits in a central field. A motor with limited
power is assumed which is ideally controllable. The oper-
ating time of the motor is given and is less than the time
of motion. In section 1, the problem is formulated and re-
duced to a boundary problem for ordinary differential equa-
tions. The method for solving this boundary problem is set

forth in section 2, and the results of calculations are

given in section 3. GbpﬁAu%

1. Equations of plane motion in a central field in terms of accelera-
tion are given as follows:
z"=acos®— fMz[(z® + yt)"
y"=asi11ﬂ—fMy/(¢'“’+y’)"“ (1.1)

Here x and y are rectangular coordinates with the origin at the center
of the gravitational field; { is the gravitational constant; M is the mass of
the central body; a is reactive acceleration; 8 is the angle between the thrust
vector and axis Ox; and a dot indicates differentiation with respect to time.

The initial and final values of coordinates x(0), y(0), x(T), y(T) and
velocities {2£(0), y(0), £(T), y(T)} for motion between two circular orbits may
be -expressed in terms of the radii of the orbits ry, r; and the angular dis-"
placement ¢; . .

zO)=r, y0)=0, &O)=0, y(©0)=ViM]r

& (T) = T1 €08 @, y (T) =rn sin P1

& (T)= — Vil rsing, y (T)=V i ricosq, (1.2)

The energy value of a maneuver for an ideally controllable motor of

limited power is given by the functional
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The useful load is a maximum when ¢ is a minimum. /57

To solve the variational problem for a minimum of functional J when the
time Tm for effecting control is given, we introduce the relay function (%),
and effective running time tm(t). The complete system of equations for the
problem is (ref. 1):

J =a¥, ~x=u, Y=v ty=2~
u =abcos ¥ — z /(22 + y2)*, v =absin ¥ —y /(2% + ¥,

JO =020 =1 y@©=0 u@©=0 v(0) =1, £(0) =0" (1.1)
J(T) » min, z(T)=rycosq, y(T) = r sing,
u(T) = — (sing,) / rj'A, v(T) =cosq, ' rj'r, tu(T)=Tx .

In system (1.4), the times, coordinates, accelerations and functional
appearing in expressions (1.1), (1.2) and (1.3) are de-dimensionalized: The
linear dimensions are adjusted to the radius of the initial orbit »ry, times t
and tm are reduced to the time of revolution in the initial orbit divided by
21, and the old notation is maintained for dimensionless values. Differential
equations of the second order (1.1) are given as four equations of the first
order.

To find optimum controls a(t), 6(t), 6§(£), we set up the Hamiltonian
and write out the equations for the momenta

H = —a% + pu + p,o + puladcos & — z [ (2* + y?)h] 4

+poladsin®—y /(@ + ¥l +pud L
. Py 3z (p,2 + pY) e Py 3ylpz+py) (1.5)
P T Twrert P T mr T @

Pu=—Px Po=—py, pu=0.
The maximum for H with respect to @ 6 and § is determined by fulfillment

of the following conditions:



008 ¢ = sin O = ~<-,_pl'_, i
Vp3+p} VplE--pt
a="aVpZFpt 8=1lwhen >0, §=0whenA<0 (1.8)

(A =1, (pu. + p.P) 4 Pw)

Thus, the variational problem has been reduced to solving the boundary

problem for the differential equations

x' =u, y. =9, u‘ = pué —-J:/ (x2 + yz)'/: \\
4 %ﬂ . y/(x2 + y"‘)”' t.M. =

Pumf':' -@ TRV . R 3y(p#+wpw)

8= 1~‘when 7A>0, d= O‘WhﬁnA<0‘ ’+Pv’)+PMv PM<0) (-7
z 0 =1, y@O =0 u@=0 »0=1, tw(0) =0
z(T) = r cosq,, y(T) =rsing;, tu(T)=7Tun
‘u(T) = — (sing,) / r,'s, v (T) = cosg, / r's - A
After solution of the boundary problem, the functions /58

:L'(t),y(t),...pu(t), pv(t), ?, are determined, and the control functional
T

7= ’i a'zf)dt \ (pu —\—p‘;"‘)édt\ (1.8)

[\
may be calculated.

The variational problem under consideration contains four parameters:
T, ¢1, r; and Tm' If the conditions of the problem are such that the para-
meter"Tm must run through a number of values (Tms T), then it is convenient to
carry out the parametric calculations with respect to Pps and not with respect
to Tm' In this case, there is no necessity in (1.7) to satisfy the condition
tm(T) =T ; the equation for ¢ may be integrated after solution of the bound-

ary problem simultaneously with the calculation of functional (1.8)

= 6(t)dt.\ (1.9)



2. When solving boundary problem (1.7) (with parameter ?, and not Tm),»
the values of must be chosen in such a way that the
functions are equal to the given values at the end of
the interval on the right. Let us form difference-discrepancies between the
given values of the coordinates and velocities and the values derived for a
fixed set of initial values

Px0y Pyos Puos Pvo
. v (TN

2 (@), y D v (2.0

Ox (/7x0y Piyoy Puo, on) =Tri1008Q; — g, (Pxo

Sy (,"),\.U, Pyos Puoy Py ) . . Pﬁo: DPuo, p,,o)
' y [} ) —rlsmcpl_yl(p ,
G: Fx00 Doy Puos puo) = — sin P/ —xl(;l (p;"’ oo D) \
v (/’xm Pyoy Puoy Puo) = cos (pl/"ll/'—z;l (pxo x; Pu(l); Puo, 1;,;0)
' Fyos Puoy Pyo o

For each quadrupole we may compute the values of the
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the discrepancies if we solve

the Cauchy boundary problem for system (1.7) with the deficient initial values

By calculating the functions at any point in the space
and applying the rules for numerical differentiation, we can
find the first derivatives second derivatives,
etc.
065/ 0 pxoy 065 [ Opygy + + s 06y [ OPxoserey |
Selection of the deficient initial values of which

satisfy the final conditions for coordinates and velocities reduces to solving

a system of algebraic equations given in implicit form

6x(Px0y Puor Puos Pro) = 0, oy (Pxos Pvor Puos Pwo) =0 (2.2)
6u (Pxoy Pvos Puss Pwo) =9,  Gu(Bzor-#o0r Puny Puo) =0,

Newton's method was used for finding the roots of equation (2.2). The
algorithm of this method is quite well known and is frequently used in equa-

tions of this type; therefore we shall point out only those special points in

5



the method associated with the large number of parameters in the problem.

We shall assume that the boundary problem is solved for the parameters
T'. ¢, r'y T, i. e.,the initial deficient values P’y Pw'’s Pu’ P’ have been de-
termined, and the problem must be solved for T',9),r), T«'y If the parameter Tm”
differs only slightly from Tm’, then it is appropriate to take the previous
solution Pugs;Pws Buey P as the zero approximation of Newton's method for
Pxo's Pwo's Pw’P;' The closer the values of Tm' and Tm”, the higher the probabili-
ty that Newton's iteration process will be convergent with this zero approxi-
mation.

The problem may be checked with respect to parameter Tm down to /59
small values Tm5 T by making any small change in the parameter Tm so that the
previous éolution Px0y P, Puos Pro Mmay be used to assure a convergent process.

A similar argument holds for the other parameters T, ¢; and r;.
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Figure 1

IfFT < 1, 9 <17 Ty = T, the central field is satisfactorily approxi-
mated by a zero-force field, and the variational problem has a simple analyt-
ical solution (ref. 1). By finding Pxo, Puey Puw,\ from this solution, we may
use them as a zero approximation for the problem in a central field. Then by
successively changing the parameters T, @y 2 7.\ to higher and lower values as
necessary and using the procedure described above, the problem may be checked
in the required range for T, @, 7, Tu

Selection of the initial unknowns pPuo, Puys, Puos Pro\ 1S assumed to be com-



pleted when the condition

V G+ (0, T G + (amP e\ (2.3)

is fulfilled at the n-th step of the process. Here e is the permissible error
in calculation.

3. Calculations were made for flight from a circular orbit with radius
rop=1 to a circular orbit with »; =1.52; in most cases, the mean angular
velocity of the flight was taken as equal to the angular velocity of motion

in the initial orbit: (¢;/D=1.

Figure 2 Figure 3

The relationship between the functional J and time of motion T is
given in figure 1 for the case where there are no passive regions on the tra-
jectory (Tm= ¢1=T). TFigure 2 shows the family of curves J"‘(Tm*) for various
values of T(¢; =7T), where

JE=T@W D g o, T=TJT,,

The calculations showed that there is one passive region on the tra-
jectory in the range 0.5<T< 4.5; in this interval of variations in times of
motion, and for 0.8 < Tm* < 1.0, the relative change in the functional--the
quantity J*--is weakly dependent on T. When Tm='== 0.5, the relative change

in the functional for various T is 12-13%, which agrees satisfactorily with
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the results for a zero-force field. Laws for the change in the modulus of
reactive acceleration are given in figure 3 for T= 4.5 and various values
of Ih.
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